作为一位无私奉献的人民教师,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。怎样写教案才更能起到其作用呢?下面是小编精心整理的五年级数学上册教案,仅供参考,大家一起来看看吧。
五年级数学上册教案1课型:
新授
教学内容:
教材P7及练习二第3、5、6、7、10题。
教学目标:
知识与技能:
使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。
过程与方法:
理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。
情感、态度与价值观:
养成认真计算与及时检验的学习习惯。
教学重点:
运用小数乘法的计算法则正确计算小数乘法。
教学难点:
正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。
教学方法:
观察、分析、比较。
教学准备:
多媒体。
教学过程:
一、复习准备
1、口算。0.9×6 7×0.08 1.87×O
0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5
指名学生口算,然后集体订正。
2、思考并回答。(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
3、揭示课题:这节课我们继续学习小数乘法。(板书课题)
二、情景引入
1、教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”
学生观察情境图,提取信息:
所求问题:(鸵鸟的最高速度是多少千米/小时)
所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)
思路分析:
(1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)
(2)追问提高学习新知的兴趣:
①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)
②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)
③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)
(3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。
让学生独立计算出鸵鸟的最高速度,并集体订正。
(4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)
学生可能会有以下几种验算的方法:
①用原式再计算一遍。
②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。
③观察法:观察小数位数或第二个因数比1大还是比1小。
④用计算器进行验算。
师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。
(5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?
生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。
师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。
师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)
2、看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。
三、巩固练习
1、完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。
2、练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。
四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。
作业:5、6、7
课外作业:教材第9页练习二第10题。
板书设计:
求一个数的小数倍数是多少及验算
五年级数学上册教案2一、导入新课。
1、谈话:大家知道我们学校是一个棋类特色学校,下个月马上又要进行各棋类比赛了,老师打算再(出示一副象棋12元,一副围棋15元)购买3副中国象棋和4副围棋,你能算一算,老师一共要付多少元吗?
2、学生理解题意后独立列式计算。
3、指名交流,并说说每一步的含义。
可能会有两种情况:
(1)分步计算:12×3=36(元)
15×4=60(元)
36+60=96(元)
(2)综合算式:12×3+15×4
二、学习新课。
(一)学习例题。
1、谈话:两位同学用不同的列式方法解决了这个问题,这个综合算式你同意吗?谁再来说说这个综合算式表示的含义?
(指名交流)
2、提问:比较一下,12×3+15×4和我们以前学过的混合运算的算式有什么不同?
(学生交流)
3、谈话:今天我们就要一起来学习“含有三步运算的混合运算”(板书:混合运算)那么这个混合运算应该怎样计算呢?你能自己尝试一下吗?
(1)学生尝试独立计算,同桌交流自己的想法。
(2)指名交流。先算什么,再算什么,为什么?说清自己是怎么想的。
4、 小结:有加法和乘法的三步混合运算要先算乘法,这样的两个乘法可以同时计算。
找出学过的平面图形中互相平行的线各有几组。学生独立思考后,先在小组内交流,再在班内交流。
(完整板书:12×3+15×4
=36+60
=96(元)
答:她一共要付96元。)
(二)练习。
1、出示 ……此处隐藏16754个字……计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。
只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。
五年级数学上册教案15教学目标:
知识技能目标: 知道字母能表示什么,能用字母表示出简单问题中的数量关系,通过生活实例,使学生初步感受到用字母表示数的作用和优点,数学教案-用字母表示数。
过程与方法目标:体会字母表示数的意义,形成初步的符号感;
情感与态度目标:在激发学生求知欲和好奇心、感受数学符号的简洁美的同时,体会到合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气。
本课重点:用字母表示数和简单的数量关系。
本节课的关键是让学生理解用含有字母的式子表示数量的意义,从中体会它的优越性,但由于学生是第一次接触没有具体数字的数量,因此把文字语言转化为符号语言是本节课的难点。
教学过程:
一、
师:同学们,我们来轻松一下好吗?(课件反复播放ABC英文歌曲。学生跟着唱)
师:刚才的唱的内容是什么?(英文字母歌)
师:谁能来说说我们生活中还有哪些地方用到字母? (生答)
师:是呀,字母在我们生活中有许多广泛的应用,刚才所说,在音乐简谱中它表示音高,在车牌号上可以表示一个地区……同样,在数学学习中也常常用字母来表示数量,这节课我们就来研究怎样用字母和含有字母的式子表示数量。(板书课题:用字母表示数)
二、
1、师:瞧大屏幕,老师给大家带来了两个盒子,一个装着乒乓球,另一个装着羽毛球。又知道“羽毛球比乒乓球多3个”,问:你来猜猜看,盒子里的羽毛球和乒乓球各有几个?
(课件出示两个分别写着“羽毛球”和“乒乓球”的盒子再出示“已知羽毛球比乒乓球多3个”这个条件。)
(根据学生的回答在黑板上填表)
乒乓球个数
羽毛球个数
师:我们已经猜出了5种可能性,还有其他可能吗?(有)那我们用省略号来表示剩下的可能性,好吗?
师:如果我们刚才继续猜下去,这两种球的个数能猜得完吗?那可怎么办?谁能够想出一个简单的法子来表示呢?
生汇报,师板书。如:乒乓球:a 羽毛球:a+3
还可以怎样表示? 羽毛球:a 乒乓球: a-3
师:请同学们思考:a+3中,a 表示什么?a+3 表示哪一个量?
a-3 中,a 表示什么?a-3 表示哪一个量?
当a=3、8……时,羽毛球分别是几个?
师结合板书,小结:看来,除了用一个字母表示数量外,我们还可以
用什么方法来表示数量 (含有字母的式子)
2、 那咱们试试看,
一箱苹果重10千克,吃了a千克,现在还有多少千克?
一只足球35元,买x 只,应付多少元?
商店运到g台彩电,总价7200元,每台彩电多少元?
周二温度由26C下降tC后是几摄氏度?
3、用含有字母的式子表示数量关系
师:一个字母只能表示数量,而含有字母的式子不但能表示出数量,而且能表示出数量关系。
独立思考:如果我们用A表示乒乓球的个数,用下面的式子分别表示排球、足球、篮球的个数,你能看得出乒乓球个数与这几种球的个数之间有什么关系吗?
课件出示:A-5 6A A÷2
师小结:看来,含有字母的式子既可以表示数量,也可以表示出数量关系,的确作用很大。
三、尝试解题,自主归纳
1、师:我们就用刚刚学的本领,到超市里去逛逛吧!(课件出示超市情景,镜头特写一些物品的单价)
师:每位同学先一样自己最喜欢的食品。
(师下发购物单、生自主进行)
购物单
名 称
单 价
数 量
总 价(列式计算)
2、交流:
师:(可以投影一些同学的购物单)你买了什么?还有谁也买了()?看这些买()的情况,这些量中,什么变?什么没有变?你能买()的总价用一个式子来表示吗?
师:可以用你喜欢的来表示,小学数学教案《数学教案-用字母表示数》。(……)
师:那么,买()的购物单我们也用不着一张张地看了,谁能用一个算式反咱们全班买()的总价表示出来?表示什么意思?
(生可能会讲同一个字母)
师作补充:一般来讲,在同一个问题里,不同的量要用不同的字母来表示。
这些字母可以是哪些数呢?
一般情况下,我们可以用a、b、c、d……任何一个字母来表示数,但是在一些特殊情况下,某些特定的量常常用特定的字母来表示,如v用来表示速度,t表示时间,s表示路程,而在求面积时,s又用来表示面积。
四、 激发情感,升华新知
1、学到这里,你有什么收获?
2、大家的收获真不小!但如果能很快地解决下面的几个问题的话,陈老师相信大家一定会收获更大!
课件出示练习题:
(一)口答:(1)一辆公共汽车上有46名乘客,在西门站下去A名,
又上来B名,这时,汽车上有( )名乘客。
(2)A的5倍减去4.8的差表示为( )
(3)张师傅每天做A个零件,李师傅每天比张师傅多做8个,
李师傅5天共做()个零件。
(二)师:上星期,我们齐贤镇举行了小学生田径运动会,镇校五年级6个班
组成一支代表队,取得了优异的成绩。这支代表队参加比赛的人数是这样的:(出示课件)
师:从屏幕上你了解到了什么信息?想想看还能用含有字母的式子表示出其他相关的信息吗?可以小组合作完成,看哪组写得快,写得多。
(三)玩一个数青蛙的游戏,好吗?
(课件播放)1只蛤蟆1张嘴,2只眼睛4条腿,1声扑通跳下水;
2只蛤蟆2张嘴,4只眼睛8条腿,2声扑通跳下水;
3只蛤蟆3张嘴,6只眼睛12条腿,3声扑通跳下水;
……
师:你还能继续往下唱吗?能用咱们今天的知识解决它吗?
(n 只青蛙n张嘴,2n只眼睛4n条腿,n声扑通跳下水。
(四)挑战性问题。
师:最后,我们再看一个非常有趣的问题。这个问题,同学们课后解决。
在某地,人们发现蟋蟀叫的次数与温度有如下的近似关系:用蟋蟀1分钟收的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)。
(1)用字母表示该地当时的温度;
(2)当蟋蟀1分钟叫的次数分别是84、105和140时,该地当时的温度约是多少?